If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x=16
We move all terms to the left:
3x^2+x-(16)=0
a = 3; b = 1; c = -16;
Δ = b2-4ac
Δ = 12-4·3·(-16)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{193}}{2*3}=\frac{-1-\sqrt{193}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{193}}{2*3}=\frac{-1+\sqrt{193}}{6} $
| 18-(x+50)=2-(4x-8)+2(x-1) | | x^2-4x-1-2/x^2-4x+1=13 | | 6x-16/4=8 | | -147=-12y^2 | | 4=(y+7)/(y-7)= | | -147=12u^2 | | 2x-15/7=-3 | | g^2-24=-5g | | X2-19x+48=0 | | 4(a-3)=2(5a-15) | | 1+6c=4 | | x^2+16x=46 | | 2x+4(3–2x)=2+4 | | 16000/q+0,125*q+50=0,25*q+50 | | 6b+18=60 | | 3(4×+6)=9x+12 | | 2x+4(3–2x)=3(2x+2)/6+4 | | 7y-19=3y+1 | | 29f^2-47f=0 | | 9+s(1-2s)=0 | | 81=-18y-y^2 | | 8t^2+66t+16=0 | | 0.7(x-3)=0.3x-0.9 | | 4(4-8m)=28m=4m=-272 | | 12-8z=20-4z | | -24*x^2=5-25*x | | 5x+48+7x=12(×+4) | | 9=-48u-64u^2 | | (+x^2-5.5x-10x+55)(x-6.4)=0 | | 33+6x=3(-1+55x) | | (x-10.0)(x-5.5)(x-6.4)=0 | | x^2-x-1000000=0 |